
A Distributed Ensemble Scheme for
Nonlinear Support Vector Machine

Wei-Chih Lai, Po-Han Huang, Yuh-Jye Lee, Alvin Chiang
National Taiwan University of Science and Technology

{m10115094, m10115095, yuh-jye, m10115088}@mail.ntust.edu.tw

Abstract—We propose an ensemble scheme with a parallel
computational structure which we call Distributed Ensemble
Support Vector Machine (DESVM) to overcome the difficulties
of large scale nonlinear Support Vector Machines (SVMs) in
practice. The dataset is split into many stratified partitions.
Each partition might be still too large to be solved by using
conventional SVM solvers. We apply the reduced kernel trick
to generate a nonlinear SVM classifier for each partition that
can be treated as an approximation model based on the partial
dataset. Then, we use a linear SVM classifier to fuse the nonlinear
SVM classifiers that are generated from all data partitions.
In this linear SVM training model, we treat each nonlinear
SVM classifier as an “attribute” or an “expert”. In the ensemble
phase, DESVM generates a fusion model which is a weighted
combination of the nonlinear SVM classifiers. It can be explained
as a weighted voting decision made by a group of experts. We test
our proposed method on five benchmark datasets. The numerical
results show that DESVM is competitive in accuracy and has a
high speed-up. Thus, DESVM can be a powerful tool for binary
classification problems with large scale not linearly separable
datasets.

Keywords. Distributed computing, ensemble learning, parallel

algorithm, reduced kernel trick, support vector machine

I. INTRODUCTION

In the era of Big Data, many extremely large scale datasets

that are generated from the real world applications are in

front of us. When people use social media and live in sensor-

equipped environments, tag data and log data will be recorded

automatically with update times on the order of milliseconds.

With the large number of data and the hidden opportunities

behind these, people have to introduce new algorithms and

structures to handle the large scale datasets. Support vector

machine (SVM) is one of the most promising and popular

learning algorithms for binary classification problems. Al-

though many computational tricks have been proposed to

dealing with the computational challenges [1]–[3] we are still

in the need of new algorithms to handle the extremely large

datasets generated from big data applications. The extremely

large datasets here, we mean those datasets are too big to

load in a single machine. Inspired by the MapReduce [4]

computational framework, we propose the Distributed Ensem-

ble Support Vector Machine for the extremely large dataset

that consists of Distributed phase and Ensemble phase. In the

Distributed phase, we split the dataset into small pieces so that

the data can fit in each computation unit. The reduced support

vector machine [1] will be applied here to generate a nonlinear

SVM classifier for each small dataset. These nonlinear SVM

classifiers will be utilized to define a nonlinear map in the

Ensemble phase. Please note that we use Distributed term

instead of Divided because in many real world applications the

data might come from different sources or business unites. Our

proposed framework can be fitted in more applications. In the

Ensemble phase, we map the entire dataset into a new feature

space via the nonlinear map defined by the nonlinear SVM

classifiers generated in the Distributed phase. We treat each

nonlinear SVM classifier as an “attribute” or “feature”. Then

we apply a linear SVM to the image of the entire dataset in

this new feature space to fuse the result of nonlinear classifiers.

The linear SVM classifier will give us a weighted sum of

each nonlinear SVMs output and determine the threshold for

positive instances. The Ensemble phase can be interpreted

as a form of meta learning [5] or decision fusion. During

the Ensemble phase the linear SVM that we call it the

fusion model, is trained with all the training data (after their

transformation by the locally trained nonlinear SVM models).

Therefore the linear SVM, which is tasked with merging the

decisions of models trained in the Distributed phase, is trained

in such a way as to take the entire dataset into account. The

size of the data matrix in the Ensemble phase is �×N , where

N is the number of nonlinear classifiers that is much smaller

than the size of entire dataset �. If we are unable to use the

entire dataset in the Ensemble phase the stratified sampling
scheme can be used here.

We present DESVM as a high-performance nonlinear classi-

fication algorithm and implement DESVM using the Message-

Passing Interface (MPI) API [6]. MPI is a standard for com-

munication among processes which is used to model a parallel

program running on a distributed memory system. With MPI,

DESVM can be run on a computing cluster consisting of

computers with different operation systems. This flexibility

makes it easy for DESVM to scale up for dealing with large

scale problems. The experimental results show that DESVM

achieves a speed-up of a factor of 10 to 20 over a competing

algorithm.

II. REDUCED SUPPORT VECTOR MACHINE

We consider the supervised learning classification problems.

We are given a training dataset,

S = {(xi, yi)|i = 1, 2, . . . , �} ⊂ R
d × Y

Each instance xi is a point in the d-dimensional real space

R
d and comes with a class label yi ∈ Y . We would like to

2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP)
Singapore, 7-9 April 2015

1
978-1-4799-8055-0/15/$31.00 ©2015 IEEE

construct a decision function h : Rd → Y in an inductive way

based on the given dataset S. The image of xi, h(xi) should

be equal to or very close to yi ∈ Y . Thus, we can predict

the class label of a new instance x that does not appear in

the given training dataset S with h(x), the image of x. For

the classification problems, the label set Y is a finite set, for

example Y = {1, 2, . . . , c}. In particular, Y = {−1,+1} will

be a binary classification problem.

The binary classification algorithm we have chosen to

use for the generation of our local experts is the Smooth

Support Vector Machine [7]. SSVM solves an unconstrained

minimization problem whose formulation is given as follows:

min
(w,b)∈Rd+1

1

2
(‖w‖22 + b2)

+
C

2

�∑

i=1

p({1− yi(w�xi + b}, β)2
(1)

with smooth p-function:

p(x, β) = x+
1

β
log(1 + e−βx), (2)

The objective function in problem (1) is strongly convex and

infinitely differentiable.

In many cases, a dataset, as represented in vector form,

cannot be linearly separated by a hyperplane. However, it is

likely that the dataset becomes linearly separable after being

projected to a higher dimensional space by a nonlinear map.

A nice property of SVM methodology is that we do not even

need to know the nonlinear map explicitly; still, we can apply

a linear algorithm to the classification problem in the high

dimensional space. The property comes from the dual form

of SVM which can express the formulation in terms of inner

product of data points. By taking the advantage of dual form,

the “kernel trick” is used for the nonlinear extension of SVM.

From the dual SVM formulation (3), all we need to know is

simply the inner product between training data vectors. Let

us map the training data points from the input space R
d to

a higher-dimensional feature space F by a nonlinear map Φ.

The training data x in F becomes Φ(x). Based on the above

observation, if we know the inner product Φ(xi)
�Φ(xj) for

all i, j = 1, 2, . . . , �, then we can perform the linear SVM

algorithm in the feature space F . The separating hyperplane

will be linear in the feature space F but is a nonlinear surface

in the input space R
d.

min
α∈R�

�∑

i=1

αi − 1

2

�∑

i=1

�∑

j=1

yiyjαiαjx�i xj

s.t.

�∑

i=1

yiαi = 0,

0 ≤ αi ≤ C for i = 1, 2, . . . , �,

(3)

Note that we do not need to know the nonlinear map Φ
explicitly. It can be achieved by employing a kernel function.

Let K(x�, z) : Rd×R
d → R be an inner product kernel func-

tion satisfying Mercer’s condition [8]–[11]. We can construct a

nonlinear map Φ such that K(x�
i , xj) = Φ(xi)�Φ(xj), i, j =

1, 2, . . . , �. Hence, the linear SVM formulation can be used

on Φ(x) in the feature space F by replacing the x�i xj in

the objective function of (3) with a nonlinear kernel function

K(x�i xj). For the nonlinear case, the formulation of SSVM

(1) can be extended to the nonlinear version by utilizing the

kernel trick as follows:

min
(u,b)∈Rd+1

1

2
(‖u‖22 + b2)

+
C

2

�∑

i=1

p([1− yi{
�∑

j=1

ujK(x�i , xj) + b}], β)2
(4)

where K(x�
i , xj) is a kernel function. The nonlinear SSVM

decision function h(x) can be expressed as follows:

h(x) =
∑

uj �=0

ujK(x�i , xj) + b. (5)

In a large scale SVM, the full kernel matrix will be very

large and dense, so it may not be appropriate to use the full

kernel matrix when dealing with (1). To avoid facing such a

large and dense full kernel matrix, we apply the reduced kernel

technique [12]. The key idea of the reduced kernel technique

is to randomly select a small portion of data and to generate a

thin rectangular kernel matrix, then to use this much smaller

rectangular kernel matrix to replace the full kernel matrix. The

formulation of reduced SSVM is expressed as follows:

min
(ũ,b)

1

2
(‖ũ‖22 + b2)

+
C

2

�̃∑

i=1

p([1− yi{
�̃∑

j=1

ũjK(x�i , xj) + b}], β)2
(6)

where ũ ∈ R
�̃ with �̃ � �, and its decision function is in the

form

h(x) =
�̃∑

j=1

ũjK(x�i , xj) + b. (7)

III. ENSEMBLE LEARNING

In this section, we will review ensemble learning and

compare DESVM with traditional ensemble methods such as

Adaboost [13] and stacking [14]. The structure of DESVM

has similarities with Adaboost and stacking. But since we

are actually inspired by MapReduce and stacking, we wish

to point out the differences between our method and these

two traditional ensemble methods.

Ensemble learning is a method that combines multiple clas-

sifiers to obtain better predictive performance rather than using

a single classifier [15]. Ensemble learning is a reliable method

which uses multiple weak learners to generate a single strong

learner [16]. In this theory, even if each weak learner behaves

a poor performance, ensemble learning can still generate a

useful model from the ensemble of weak learners.

2

A. Adaboost

Adaboost is an ensemble learning algorithm that adaptively

adjusts for the errors returned from the weak learners. For

a training dataset, Adaboost use a series of weighted weak

learners to generate a classification model. In the training

procedure, Adaboost will update the weighting of weak learn-

ers according to training errors in each iteration. After many

iterations, Adaboost gives the ensemble of all weak learner

models as the final classification model.

There are two major differences between our method and

Adaboost. First, Adaboost uses training errors from weak

learners to adjust ensemble model. Our method considers each

model in Distribution phase as a local expert for providing

estimation as a new training attribute. Second, each weak

learner in Adaboost uses all training data and adjusts in each

iteration. In our method, each model in Distribution phase only

uses data subset to generate model. In Ensemble phase, each

local expert uses sampled training data to make new feature

for generating fusion model.

B. Stacking

Stacked generalization, or stacking, generally involves train-

ing a learning algorithm to combine the predictions of several

other learning algorithms. First, all of the other algorithms are

trained using the same training data, then a fusion algorithm

is trained to make a final prediction using all the predictions

of the other algorithms as inputs.

Our proposed method is very similar to stacking although

we use the estimate value rather than the decision function

as the the final model inputs. Also, in DESVM we only

use SVM models. Because the estimation of SVM is the

distance between data and hyperplane, we can reasonably see

the estimation as new feature.

IV. DISTRIBUTED ENSEMBLE SUPPORT VECTOR MACHINE

In order to apply nonlinear method upon super large scale

problem, we provide an algorithm named Distributed En-

semble Support Vector Machine (DESVM). We partition the

whole problem into smaller ones instead of rewriting the SVM

formula into a parallel algorithm. Each smaller set will be

trained by individual nonlinear SVM. After training nonlinear

SVMs, we introduce an ensemble structure which treat every

nonlinear SVM as a local expert. Those local experts will

combine their estimations to solve the whole problem. Fig. 1

shows the whole structure of our algorithm. In this paper, we

focus on binary classification to simplify our problem.

A. Training

Distribution phase is the first step of training. In this phase,

a super large scale dataset will be split into many small

subset pieces. Each subset piece will be trained by an RSVM

independently to generate its own model. The next step is

Ensemble phase. We use the term estimate(A,F) as our

feature generate function which we will define later to combine

the Distribution phase’s results.

The whole structure is to make nonlinear SVM possible

to train a super large scale problem. In the meantime, every

small nonlinear SVM is independent from each other so that it

can build nonlinear SVM model on many different machines.

We use MPI technique to implement out algorithm. Moreover,

we can also have speed advantage because DESVM generates

nonlinear models by smaller kernels rather than a single

gigantic full kernel.

Algorithm 1 Distributed Ensemble SVM

Input: Large scale dataset A, split number N, sample size �.
Output: RSVM models {Fj}Nj=1, the sample instances form

origin dataset, the linear SSVM model {Ffusion} with new

features generated by {Fj}Nj=1

1) Split A into N subsets {Aj}Nj=1 and choose sample

instances, sample, with size �
2) Learn the RSVM model Fj from each subset Aj

3) Generate a new representation B ∈ R
�×N

The jth column of B is represented as follow:

Bj = estimate(sample, Fj)
4) Learn the linear SSVM model with B:

Ffusion ←SSVMlinear
train (B)

5) Return {Fj}Nj=1, sample, and Ffusion

1) Distributed phase: Build local expert for data subset:
Since we have limited computing resources in the real world,

we are confronted with the task of building a O(�2) kernel

for a � instances data when we are trying to train a nonlinear

SVM model. If � grows large, it will not be possible to use a

single machine to train the whole data.

In response, we partition the whole problem into N subsets.

Making our complexity become O(N(�/N)2). Letting our

machine able to afford to solve the problem. Furthermore,

we use RSVM as our local expert to have our complexity

O(N(r�/N)2) which r is the ratio in RSVM to have greater

advantage on it. We also let the data split in similar distribution

as in the original whole dataset to remain the balance of

subsets.

Each trained RSVM model has a decision function of the

form (7) reproduced here:

h(x) =
�̃∑

j=1

ũjK(x�i , xj) + b.

These estimates will be used as the input features in the

ensemble phase.

2) Ensemble phase – Learning from local experts: In this

phase, we construct a fusion table to combine the features

that were generated by the models trained in the Distributed

phase. We use the estimations, produced by the RSVM models

for each data instance, as the inputs of our final linear SVM

model. In order to increase performance, we choose to use the

estimations which are randomly selected portion of the original

dataset rather than the entire dataset. We give each instance an

estimation from each local expert. Recall the decision function

3

Fig. 1: Distributed Ensemble Support Vector Machine structure

of the RSVM models (7). Here we rewrite it to show its role

in the DESVM procedure:

estimate(A,F) = wF ×K(A,ReduceSetF) + bF (8)

A contains the instances we want to have estimation values

from the expert F . wF , bF represents the weights and bias of

the RSVM model and K is the kernel function. In this case,

the input instances will build a kernel with the reduced set we

used to generate our RSVM model. The reduced set can also

be regarded as the local expert’s representation of its training

set.
Since we partition the data into N pieces, we will have

N local experts that can generate N features for one data

instance. In other words, DESVM recasts the problem into a

new N dimension space. Instances in the new feature space

are linear separable as shown in Fig. 2. Using a linear SVM

to create the fusion model is the last step. This fusion model

will classify the input instances on the new feature space.

(a) ijcnn1 using PCA (b) ijcnn1 in Ensemble phase

Fig. 2: PCA vs. Ensemble phase

B. Predicting
Making predictions on new data, we go through the same

steps as training. If there are too many test data, we partition

the dataset into smaller subsets. Then, we use the local experts

to produce new features for our test instances. Finally, we can

get the predicted label from the fusion model in the new N -

dimension space.

Algorithm 2 Distributed Ensemble SVM predict

Input: Testing instance x, {Fj}Nj=1, and Ffusion

Output: Predicted label

1) Split x into N subsets: {xi}Ni=1

2) Generate the new representation B ∈ R
L×N

with L equals to the size of x:

Bij = estimate(xi, Fj)
3) Predicted label ← sign(Ffusion(B))

C. Implementation details

We implement DESVM by using MPI on C++. The C++

language is used for our implementations of RSVM as local

expert and SSVM as the ensemble model. This implementation

has high performance and is able to handle large scale data in

sparse format. MPI is used to transport meta information and

serialized representations of the local experts.

1) Training: In the Distributed phase, DESVM trains local

experts by assigning training tasks for many individual idle

computing units until all training tasks are completed. The

number of training tasks is equal to the split number. If a

training task is finished, the local expert will be send to a

host computing unit and stored. Since we implement DESVM

by MPI and all training tasks are independent, the training

procedure of DESVM can be processed in parallel. Moreover,

we use MPI to find idle processors and minimize the task

waiting time. For a cluster comprising computing units having

unequal computing ability, this is an useful characteristic.

In the Ensemble phase, the host computing unit loads all

local experts and sends them to all other idle computing

units. After sending complete, each local expert will give

a estimation value for each sampled training data. As in

4

the Distributed phase, DESVM assigns estimation tasks to

different computing units so that we can generate estimation

values in parallel. Those estimation values will be combined

into a fusion table used as the training data for the ensemble

model. Creating the fusion table is usually the most time-

consuming step of the entire DESVM procedure.
2) Testing: The testing procedure is just like the Ensemble

phase. But we use testing data as input instead of sampled

training data. We implement loading testing data in batch to

prevent a lack of memory.

TABLE I: Computer Manufacture

CPU Core Number RAM(GB)

Intel E3-1230 V2 @ 3.30GHz 8 16

Intel i3-540 @ 3.07GHz 4 4

Intel i3-2100 @ 3.10GHz 4 8

AMD A8-3850 @ 2.90GHz 4 8

V. EXPERIMENTS

In this section, we will show this method retains the

classification ability of nonlinear SVM. Also, we are interested

in the performance of each RSVM models and the difference

between those RSVM models and fusion model. In all our

experiments we use the radial basis function (RBF) kernel:

K(x�i , xj) = e−γ‖xi−xj‖2
2

All experiments were running on the computers in Table. I.

A. DCSVM
We compare our method with another state-of-the-art large

scale nonlinear SVM algorithm, Divide-and-Conquer Support

Vector Machine [17]. DCSVM divides the big problem into

smaller ones. After computing all the subproblem solutions, it

concatenates them as an approximate solution for the whole

problem. In the division step, it solves smaller problems

instead of the big one to reduce computing time. In the conquer

step, it uses appropriate solution to initialize the solver for the

whole problem for speeding up training process. Moreover, the

authors propose a multilevel stacking approach which further

increases the speed up. It also provides early version for early

prediction strategy. The early DCSVM simply use the sum

of the subproblem solutions rather than solving the whole

problem. With those advantage, DCSVM outperforms state-

of-the-art methods in terms of training speed and is our main

competitor.

B. Preprocessing
In the first step of preprocessing, we normalize each at-

tribute column between [0, 1]. Second, we split the dataset into

N subsets for training the local experts. We ensure that each

subset retains the same proportion of positive and negative

labels. Also, we sample instances from each sub-dataset for

creating the fusion table used to train the final combiner

classification model. In each sampled dataset, the number of

positive instance is equal to the number of negative instance.

TABLE II: Dataset information

Dataset Number of Dimension Number of Split

Name Training Testing Number

ijcnn1 49,990 22 91,701 20

usps01 266,079 676 75,383 8

webspam 280,000 254 70,000 40

kddcup99 4,898,431 122 311,029 200

mnist8m 8,000,000 784 100,000 200

C. Experiment Setting

While training RSVM model in distributed phase, we need

to choose the value of cost C, gamma γ (for the RBF kernel)

and the reduce ratio r (used in selection the reduced kernel).

And for the ensemble phase, we need to decide the value of

cost C for SSVM.

D. Experiment Results

We use different sizes of datasets to test the ability of

DESVM. The data information are in Table II.

1) RSVM models vs. Fusion model: In the Ensemble phase,

we use ensemble method to fuse local experts and generate

the fusion model with better predictive ability. We apply our

method on ijcnn1 to justify our theory. The result is shown

in Fig. 3. As we expected, even each local expert has poor

predictive ability. Our fusion model can still has amazing

performance by ensemble learning.

Fig. 3: RSVM models vs. Fusion model

2) Computation time: In this part, we only compare the

training times with DCSVM and early DCSVM on five

datasets. Those datasets are in different scale e.g. ijcnn1 has

10,000 of training instance number; upsp01 and webspam have

100,000; kddcup99 and mnist8m have 1,000,000. In Fig. 4

shows that our method is faster than the state-of-the-art method

DCSVM by a factor of 10 to 20.

5

Fig. 4: Computation time comparison: DCSVM vs. DESVM

E. Accuracy

In this section, we would like to show that our proposed

method stays competitive with DCSVM. We compare the pre-

dictive performance of DCSVM, early DCSVM and DESVM

on five different datasets. Fig. 5 shows that accuracy of these

methods have almost no difference.

Fig. 5: Accuracy of DCSVM and DESVM

F. Training Time vs. number of cores

To demonstrate DESVM can speed up the training pro-

cedure of nonlinear SVM by distributed structure. We test

DESVM on a large dataset, kddcup99, with different number

of processes on different machines. Experiments show that we

can have linear speed-up with the number of cores.

VI. CONCLUSION

In this paper, we have described a parallel algorithm

which we call Distributed Ensemble Support Vector Machine

(DESVM). It’s purpose is to speed up the application of

nonlinear SVM methods on super large scale data through

the use of a parallel training and prediction structure. In the

Distributed phase, it splits super large data into small pieces

and trains nonlinear SVM models from each piece. In the

Ensemble phase, it combines all models into a linear SVM

as a ensemble model. Since each training data in Distributed

phase is much smaller, the training time is radically decreased.

Moreover, training for each model can be done in parallel.

We now have the ability to process super large scale

datasets. Compared to normal batch learning algorithms,

DESVM has the advantage of smaller computing and memory

requirements.

The experimental results show that we have successfully

extended Reduced Support Vector Machine from handling

large data to having the ability to process super large scale

data. For a dataset which is extremely large and needs to be

trained by a nonlinear SVM, our method can do it quickly and

in parallel both in training and prediction.

ACKNOWLEDGEMENT

This work was supported by Ministry of Science and Tech-

nology, National Taiwan University and Intel Corporation un-

der Grants MOST 103-2911-I-002-001, 102-2923-E-011-001-

MY2, 103-2221-E-011-109-MY2 and NTU-ICRP-104R7501

REFERENCES

[1] Y.-J. Lee and O. L. Mangasarian, “Rsvm: Reduced support vector
machines.” in SDM, vol. 1. SIAM, 2001, pp. 325–361.

[2] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning with
kernels,” Signal Processing, IEEE Transactions on, vol. 52, no. 8, pp.
2165–2176, 2004.

[3] H. Ouyang and A. G. Gray, “Fast stochastic frank-wolfe algorithms for
nonlinear svms.” in SDM. SIAM, 2010, pp. 245–256.

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[5] R. Vilalta and Y. Drissi, “A perspective view and survey of meta-
learning,” Artificial Intelligence Review, vol. 18, no. 2, pp. 77–95, 2002.

[6] M. P. Forum, “Mpi: A message-passing interface standard,” Knoxville,
TN, USA, Tech. Rep., 1994.

[7] Y.-J. Lee and O. L. Mangasarian, “Ssvm: A smooth support vector ma-
chine for classification,” Computational optimization and Applications,
vol. 20, no. 1, pp. 5–22, 2001.

[8] C. J. Burges, “A tutorial on support vector machines for pattern recogni-
tion,” Data mining and knowledge discovery, vol. 2, no. 2, pp. 121–167,
1998.

[9] V. Cherkassky and F. M. Mulier, Learning from data: concepts, theory,
and methods. John Wiley & Sons, 2007.

[10] R. Courant and D. Hilbert, Methods of mathematical physics. CUP
Archive, 1966, vol. 1.

[11] N. Cristianini and J. Shawe-Taylor, An introduction to support vector
machines and other kernel-based learning methods. Cambridge uni-
versity press, 2000.

[12] Y.-J. Lee and S.-Y. Huang, “Reduced support vector machines: A
statistical theory,” Neural Networks, IEEE Transactions on, vol. 18,
no. 1, pp. 1–13, 2007.

[13] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-
line learning and an application to boosting,” in Computational learning
theory. Springer, 1995, pp. 23–37.

[14] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2,
pp. 241–259, 1992.

[15] R. Maclin and D. Opitz, “Popular ensemble methods: An empirical
study,” arXiv preprint arXiv:1106.0257, 2011.

[16] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy,” Machine
learning, vol. 51, no. 2, pp. 181–207, 2003.

[17] C.-J. Hsieh, S. Si, and I. S. Dhillon, “A divide-and-conquer solver for
kernel support vector machines,” arXiv preprint arXiv:1311.0914, 2013.

6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

